The role of directionally selective neurons in the perception of global motion.
نویسندگان
چکیده
Dynamic random dot targets consisting of many localized motion vectors have been used to study the pooling of local motion signals into a global motion percept (Williams and Sekuler, 1984). In such displays, the dots are displaced with a constant step size and the direction of motion for each dot is chosen at random from a specified distribution. When the distribution extends over 360 deg, the display consists only of local random motion of individual dots and no coherent motion is reported. However, when the distribution is less than 360 deg (biased), the stimulus appears to flow in a single direction. We examined the effects of reducing the number of directionally selective (DS) cortical neurons on this integration process. Normal cats and cats with severely reduced proportions of DS neurons were trained on 2 direction discrimination tasks. The discrimination of opposite directions was examined while varying either the range of directions of local motion, or the proportion of dots moving with biased distribution. When all dots in the display were directionally biased, cats with reduced numbers of DS neurons performed the task as well as normal cats and humans (threshold range: 280-320 deg). However, when the proportion of biased dots decreased, these animals had severe deficits. Thus, in the absence of noise, even a very small number of DS neurons can perform spatial pooling of local directional signals, and support normal discrimination of opposite directions. However, a full complement of directional detectors appears necessary when the motion signal is masked by noise. The discrimination of small differences in direction revealed far more severe deficits, even when all the dots in the display were directionally biased (no noise).(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
The dynamical foundations of motion pattern formation: stability, selective adaptation, and perceptual continuity.
A dynamical model is used to show that global motion pattern formation for several different apparent motion stimuli can be embodied in the stable distribution of activation over a population of concurrently activated, directionally selective motion detectors. The model, which is based on motion detectors being interactive, noisy, and self-stabilizing, accounts for such phenomena as bistability...
متن کاملMotion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1.
We measured the spatial and temporal limits of directional interactions for 105 directionally selective middle temporal (MT) neurons and 26 directionally selective striate (V1) neurons. Directional interactions were measured using sequentially flashed stimuli in which the spatial and temporal intervals between stimuli were systematically varied over a broad range. A direction index was employed...
متن کاملBinocular integration of pattern motion signals by MT neurons and by human observers.
Analysis of the movement of a complex visual stimulus is expressed in the responses of pattern-direction-selective neurons in area MT, which depend in turn on directionally selective inputs from area V1. How do MT neurons integrate their inputs? Pattern selectivity in MT breaks down when the gratings comprising a moving plaid are presented to non-overlapping regions of the (monocular) receptive...
متن کاملThe Emergence of Directional Selectivity in the Visual Motion Pathway of Drosophila
The perception of visual motion is critical for animal navigation, and flies are a prominent model system for exploring this neural computation. In Drosophila, the T4 cells of the medulla are directionally selective and necessary for ON motion behavioral responses. To examine the emergence of directional selectivity, we developed genetic driver lines for the neuron types with the most synapses ...
متن کاملResponses of cat's pulvinar neurons to moving visual stimuli.
Visually-driven pulvinar neurons were investigated by moving visual stimuli. Of a total of 256 observed neurons 25 percent were not sensitive to the movement of light spots, but revealed a vigorious activity during the movement of black objects. According to the response pattern elicited by the motion of objects through receptive fields, neurons were classified as follows: (a) directionally non...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 10 9 شماره
صفحات -
تاریخ انتشار 1990